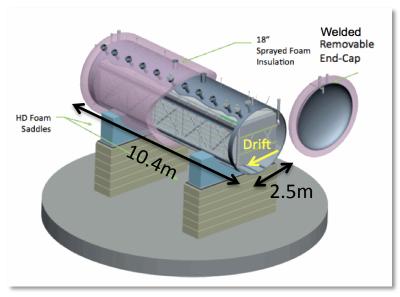


MicroBooNE Update for FNAL PAC

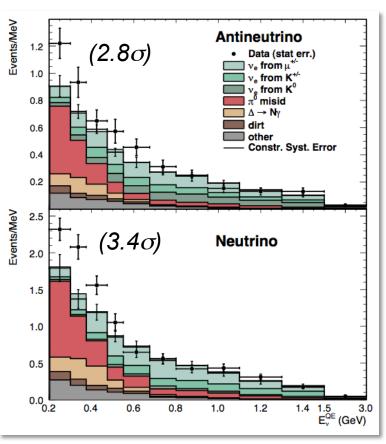
Bonnie Fleming January 23, 2014

Outline



- MicroBooNE overview
 - Collaboration
 - Project Status
- MicroBooNE recent accomplishments
 - Final assembly of the TPC
 - PMT installation
 - TPC Installation
 - LArTF
 - Transition to Operations
 - Commissioing
 - Data taking
 - Software and Reconstruction

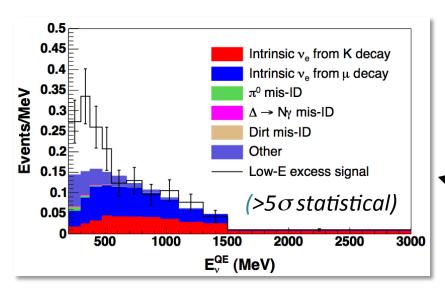
MicroBooNE


January 23, 2014

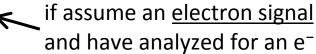
- 170 ton LAr TPC
 - same beam & location as MiniBooNE
 - new detector technology
- goals:
 - MiniBooNE excess events
 - σ_{v} measurements in argon
 - R&D for future LAr TPCs

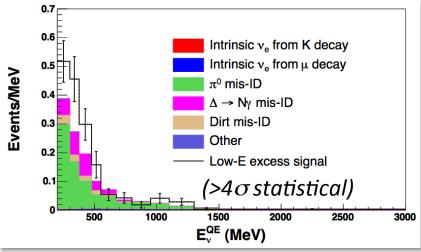
Motivation = MiniBooNE Excess

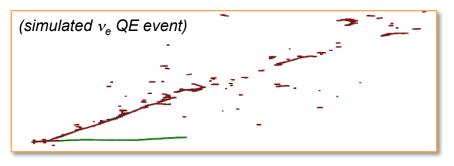
• MiniBooNE has published v_e and v_e results with the entire data set (Aguilar-Arevalo et al., Phys. Rev, Lett. 110, 161801 (2013))



- observe an excess of low energy events in both running modes
- source of the excess is unknown (MicroBooNE!)
- both outcomes are interesting

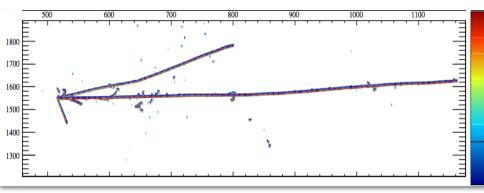

January 23, 2014

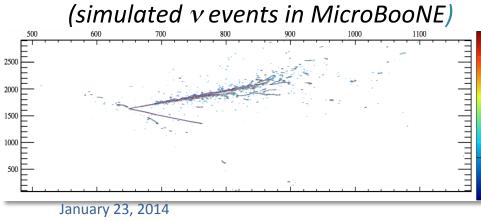

MicroBooNE



• unlike MiniBooNE, MicroBooNE can distinguish e⁻'s from γ's

if assume a <u>photon background</u> and have analyzed for a γ


(projections for $6.6x10^{20}$ POT = 3 years)


B. Carls (FNAL)

MicroBooNE Cross Sections

• will more precisely examine final states produced in ν interactions by exploiting LAr TPC capabilities and building off of what we've learned in both MiniBooNE & ArgoNeuT

	BNB	NuMI
Total Events	145k	60k
ν _μ CCQE	68k	25k
NC πº	8k	3k
ve CCQE	0.4k	1.2k
POT	6x10 ²⁰	8x10 ²⁰
Projected Event Rates for MicroBooNE in 2-3 years.		

- MicroBooNE will make first σ_v measurements in argon at low neutrino energies (~1 GeV)
- these analyses will benefit from well-known Booster neutrino flux

Aguilar-Arevalo et al., PRD 79, 072002 (2009)

R&D

 MicroBooNE detector is not a pure prototype for LBNE; however, it incorporates several major advances which are important "proofs of principle" for next generation large detectors:

- non-evacuated cryostat
- cold (in liquid) electronics
- 2.5 meter drift
- •Gaining experience in design and fabrication details, costing, etc.
- •Additionally, MicroBooNE will collect a large data set of ν events which will be used to develop fully automated event reconstruction

MicroBooNE Collaboration

Brookhaven: M. Bishai, H. Chen, K. Chen, S. Duffin, J. Farrell, F. Lanni, Y. Li, D. Lissauer, G. Mahler, D. Makowiecki, X. Qian, J. Mead, V. Radeka, S. Rescia, A. Ruga, J. Sondericker, C. Thorn, K-C. Wu, B. Yu University of Cambridge: A. Blake, J. Marshall, M. Thomson University of Chicago: W. Foreman, Johnny Ho, D. Schmitz, J. Zennamo University of Cincinnati: R. Grosso, J. St. John, R. Johnson, B. Littlejohn Columbia University: N. Bishop, D. Caratelli, L. Camilleri, C. Chi, J. Dickinson, D. Garisto, D. Kaleko, G. Karagiorgi, B. Seligman, M. Shaevitz, B. Sippach, K. Tatem, K. Terao, B. Willis Fermilab: R. Acciarri, B. Baller, D. Bogert, B. Carls, M. Cooke, H. Greenlee, C. James, E. James, H. Jostlein, M. Kirby, S. Lockwitz, B. Lundberg, A. Marchionni, S. Pordes, J. Raaf, G. Rameika, B. Rebel, A. Schukraft, S. Wolbers, T. Yang, G.P. Zeller* Kansas State University: T. Bolton, S. Farooq, S. Gollapinni, G. Horton-Smith, D. McKee Los Alamos: G. Garvey, J. Gonzales, W. Ketchum, B. Louis, G. Mills, Z. Pavlovic, R. Van de Water MIT: W. Barletta, L. Bugel, G. Collin, J. Conrad, C. Ignarra, B. Jones, T. Katori, M. Toups Michigan State University: C. Bromberg, D. Edmunds New Mexico State University: A.McLean, T. Miceli, V. Papavassiliou, S. Pate, K. Woodruff 120 Otterbein University: N. Tagg collaborators University of Oxford: G. Barr, R. Guenette University of Pittsburg: S. Dytman, D. Naples, V. Paolone from 21 Princeton University: R. Klemmer, M. Komor, K. McDonald, W. Sands institutions, 24 Saint Mary's University of Minnesota: P. Nienaber postdocs,15 SLAC: M. Convery, M. Graham, D. Mueller Syracuse University: J. Asaadi, J. Esquivel, M. Soderberg grad students University of Texas at Austin: S. Cao, J. Huang, K. Lang, R. Mehdiyev University of Bern, Switzerland: A. Ereditato, I. Kreslo, C. Rudolf von Rohr, T. Strauss, M. Weber

INFN, Italy: F. Cavanna, O. Palamara (currently at Yale)

Virginia Tech: M. Jen, L. Kalousis, C. Mariani

MicroBooNE Collaboration

Brookhaven: M. Bishai, iH. Chen, K. Chen, S. Duffin, J. Farrell, F. Lanni, Y. Li, D. Lissauer, G. Mahler, D. Makowiecki, J. Mead, X. Qian, V. Radeka, S. Rescia, A. Ruga, J. Sondericker, C. Thorn, K-C. Wu, B. Yu

University of Cambridge: A. Blake, J. Marshall, M. Thomson

University of Chicago: W. Foreman, Johnny Ho, D. Schmitz, J. Zennamo

University of Cincinnati: R. Grosso, J. St. John, R. Johnson, B. Littlejohn

Columbia University: N. Bishop, D. Caratelli, L. Camilleri, C. Chi, J. Dickinson, D.Garisto, D. Kaleko, G. Karagiorgi, B. Seligman, M. Shaevitz, B. Sippach, K. Tatem, K. Terao, B. Willis

Fermilab: R. Acciarri, B. Baller, D. Bogert, B. Carls, M. Cooke, H. Greenlee, C. James, E. James, H. Jostlein, M. Kirby, S. Lockwitz,

B. Lundberg, A. Marchionni, S. Pordes, J. Raaf, G. Rameika, B. Rebel, A. Schukraft, S. Wolbers, T. Yang, G.P. Zeller*

Kansas State University: T. Bolton, S. Farooq, S. Gollapinni, G. Horton-Smith, D. McKee

Los Alamos: G. Garvey, J. Gonzales, W. Ketchum, B. Louis, G. Mills, Z. Pavlovic, R. Van de Water

MIT: W. Barletta, L. Bugel, G. Collin, J. Conrad, C. Ignarra, B. Jones, T. Katori, M. Toups

Michigan State University: C. Bromberg, D. Edmunds

New Mexico State University: A.McLean, T. Miceli, V. Papavassiliou, S. Pate, K. Woodruff

New Otterbein University: N. Tagg

Collaborators: University of Oxford: G. Barr, R. Guenette

University of Pittsburg: S. Dytman, D. Naples, V. Paolone

Princeton University: R. Klemmer, M. Komor, K. McDonald, W. Sands

Saint Mary's University of Minnesota: P. Nienaber

SLAC: M. Convery, M. Graham, D. Mueller

Syracuse University: J. Asaadi, J. Esquivel, M. Soderberg

University of Texas at Austin: S. Cao, J. Huang, K. Lang, R. Mehdiyev

University of Bern, Switzerland: A. Ereditato, I. Kreslo, C. Rudolf von Rohr, T. Strauss, M. Weber

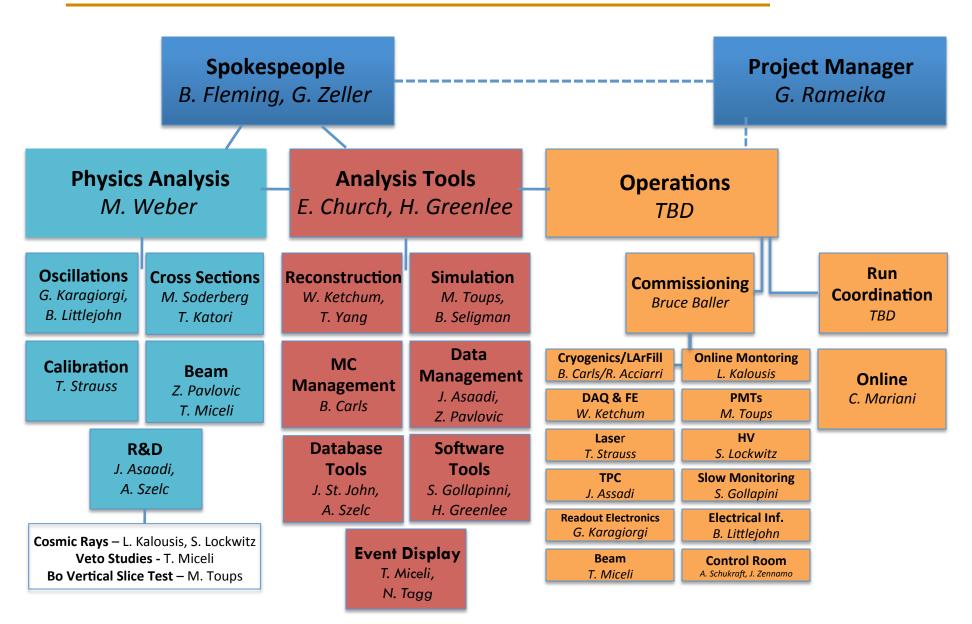
INFN, Italy: F. Cavanna, O. Palamara (currently at Yale)

Virginia Tech: M. Jen, L. Kalousis, C. Mariani

Yale University: C. Adams, E. Church, B. Fleming*, A. Hackenberg, K. Partyka, A. Szelc

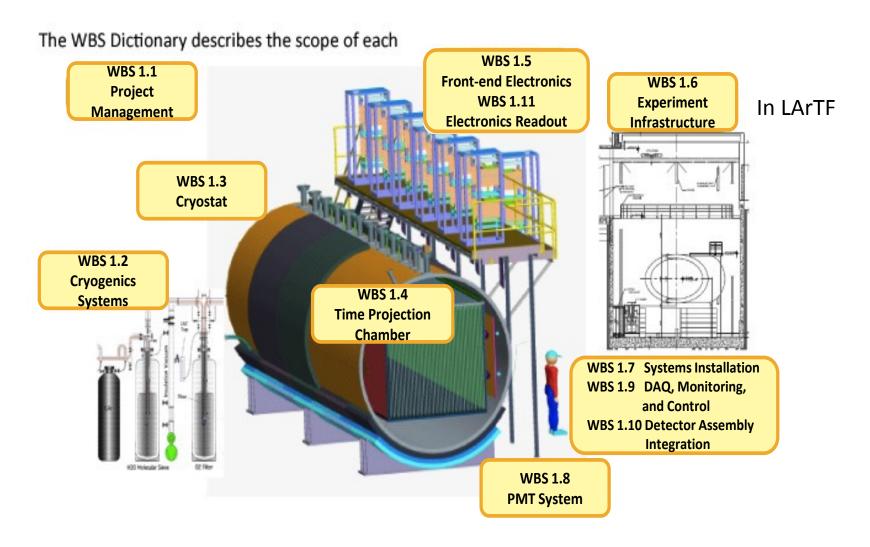
* <u>spokespeople</u>

SLAC


Oxford

Cambridge

Pittsburgh


Collaboration Organization

MicroBooNE project

MicroBooNE Project Milestones

- □ CD-0 Mission Need : September 2009
- □ CD-1 Alternative Selection and Cost Range : June 2010
- □ CD-2/3a Performance Baseline : September 2011
- CD-3b Begin Full Construction : March 2012
- □ CD-4 Begin Operations :
 - Working date : mid-2014
 - DOE CD-4 milestone September 2015 (from PEP)


MicroBooNE Project Milestones

- CD-0 Mission Need : September 2009
- CD-1 Alternative Selection and Cost Range: June 2010
- CD-2/3a Performance Baseline : September 2011
- CD-3b Begin Full Construction : March 2012
- □ CD-4 Begin Operations :
 - Working date : mid-2014
 - DOE CD-4 milestone September 2015 (from PEP)
 - Final Assembly of all systems
 - Infrastructure at LArTF
 - Transport detector to LArTF
 - Transition to Operations

TPC Final Assembly (all wires strung by May 2013)

TPC assembled and wire stringing complete in May 2013

In progress Task List

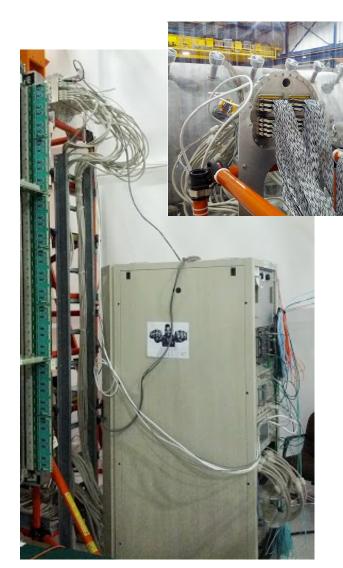
Red = DONE

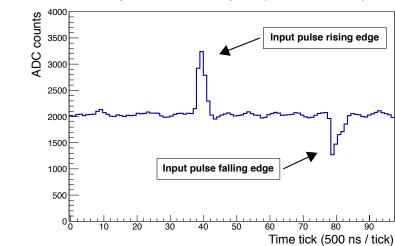
- Tasks at DAB
 - Install cable tray and cold cables
 - Wire tension measurements (all wires)
 - Cold electronics installation and testing
 - Final survey of TPC
 - Install final field cage tubes
 - Install RTDs on TPC
 - Install PMT array
 - Insert TPC in cryostat
 - Connect cold cables
 - Final checks
 - Weld endcap
- Tasks at LArTF
 - Complete Phase-1 cryo piping
 - Install vessel
 - Insulate vessel
 - Install platform & racks
 - Cabling and test readout
 - Install Phase-2 cryo (compressor & cool-down)

Activities accomplished through Project teams and Task Forces (experts + "new eyes")

- □ Task Forces (in progress) :
 - TPC Final Modifications
 - High Voltage Feed-through
 - Detector operating parameters
 - Measurement of HV properties of Lar
 - Readiness for ORC

Wire tension measurements


- MicroBooNE students/postdocs and teacher interns (FNAL TRAC program)
 helped immensely with these measurements and with analyzing the data.
 - Great summer project!
- Completed measurement of all wires (in tolerance) this fall



DAB: Testing electronics

Response to calibration pulse (induction channel)

- All cold motherboards installed and tested with this summer -- DONE
- Test pulse injected to boards, readout by mobile readout crate + DAQ -- DONE
- After cold cables are pulled through chimneys and attached to feedthrough, same tests will be done - DONE

TPC final assembly

- TPC modifications to increase safety factor against HV breakdown
 - Modification of final field cage loops
 - Modification (smoothing) of some joints
 - Cathode plane
 - Field cage
 - Final checks
 - In progress



Softer bend radius on corner field cage tubes

Smooth joints with welds on Cathode Plane

PMT final assembly

Final Assembly of PMT array and Installation in the detector September 2013

Construction Update

Optical system installed in MicroBooNE detector

MicroBooNE's optical system, which captures and measures light resulting from particle interactions, was recently installed in the experiment's detector. Photo: Matt Toups, MIT

Installation in the Cryostat

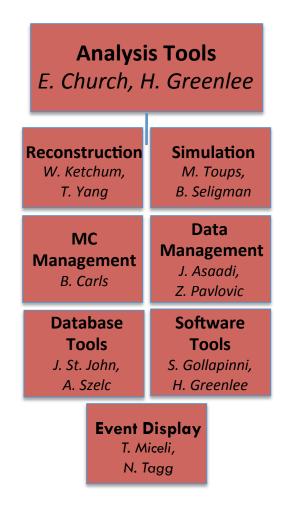
LArTF

At LArTF

- Phase 1 Cryo testing in progress
- HV Cryostat
 - Production Feed-through is ready for testing
 - All parts for breakdown test assembled
 - Stand alone filling in progress
- Will operate Phase I and tests until we are ready to install the detector (~beginning of March)

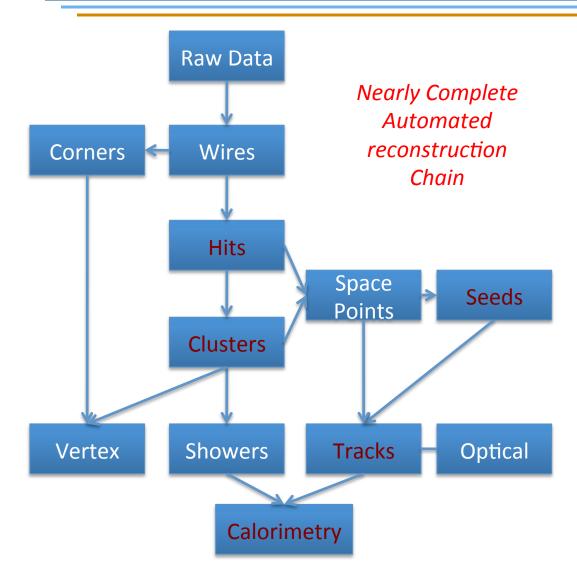
Transition to Operations

- Well integrated project team and collaboration
- Many folks playing roles on project are transitioning to Commissioning phase
- Commissioning
 - Team Leader: Bruce Baller
 - Teams for each system led by expert PDs and faculty level advisors (outside of their area – "new eyes")
 - Planning underway now as pre-commissioning completes


Transition to Operations

Team	Leader	
Cryogenics / LAr Fill	Ben Carls / Roberto Acciarri	
DAQ & FE	Wes Ketchum	
Laser	Thomas Strauss	
TPC	Jonathan Asaadi	
Readout electronics	Georgia Karagiorgi	
Beam	Tia Miceli	
Online monitoring	Leonidas Kalousis	
PMTs	Matt Toups	
HV	Sarah Lockwitz	
Slow monitoring	Sowjanya Gollapini	
Electrical infrastructure	Bryce Littlejohn	
Control room	Anne Schukraft, Joseph Zennamo	

Analysis Tools



Analysis Tools sub-groups in place and developing tools since May

- Regular MC challenges
- Progress on Reconstruction/ simulation/software tools
- Thinking about first plots and first analyses

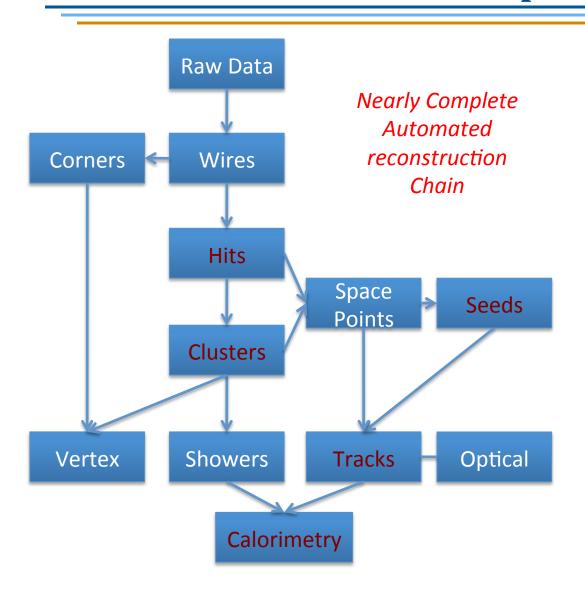
Reconstruction Development

Simplified version

Feature

Fermilab Today

MicroBooNE, in 3-D



Tingjun Yang (left) and Wesley Ketchum lead the effort to develop new 3-D reconstruction software for the MicroBooNE experiment. Here they stand inside the MicroBooNE time projection chamber. Photo: Reidar Hahn

- Pandora is being integrated into LArSoft
- Optical reconstruction is being developed
- Significant work on shower reconstruction

Reconstruction Development



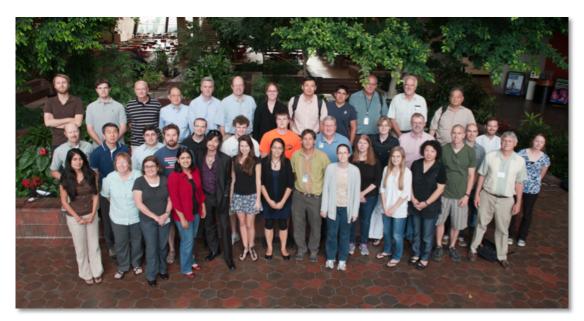
Feature

Fermilab Today

MicroBooNE, in 3-D

Tingjun Yang (left) and Wesley Ketchum lead the effort to develop new 3-D reconstruction software for the MicroBooNE experiment. Here they stand inside the MicroBooNE time projection chamber.

Photo: Reidar Hahn


Reconstruction Workshop last November

Reconstruction "retreat" this March

Conclusions

- Final pre-commissioning work underway
- Detector to move to LArTF in early March
- Transition to Operations underway
 - Commissioning Team planning commissioning phase
 - Nearly complete Reconstruction chain
 - Readying for Operations

Great team of people – new collaborators, students and postdocs, well integrated collaboration and project team

•Ready for neutrino beam when detector is commissioned:
January 23, 2014

2.2E20 POT/year for 3 years